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ABSTRACT

As deep learning-based models are deployed more widely in search
& recommender systems, system designers often face the issue of
gathering large amounts of well-annotated data to train such neural
models. While most user-centric systems rely on interaction signals
as implicit feedback to train models, such signals are often weak
proxies of user satisfaction, as compared to (say) explicit judgments
from users, which are prohibitively expensive to collect. In this
paper, we consider the task of learning from limited labeled data,
wherein we aim at jointly leveraging strong supervision data (e.g.
explicit judgments) along with weak supervision data (e.g. implicit
feedback or labels from the related task) to train neural models.
We present data mixing strategies based on submodular subset
selection, and additionally, propose adaptive optimization tech-
niques to enable the model to differentiate between a strong label
data point and a weak supervision data point. Finally, we present
two different case-studies (i) user satisfaction prediction with mu-
sic recommendation and (ii) question-based video comprehension
and demonstrate that the proposed adaptive learning strategies are
better at learning from limited labels. Our techniques and findings
provide practitioners with ways of leveraging external labeled data.
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1 INTRODUCTION

While neural models often provide state-of-the-art performances in
search and recommendation tasks, they rely heavily on large tagged
corpora. Manual collection and curation of such datasets at scale
is often infeasible due to time and expense constraints. Moreover,
given the dynamicity of real world data and modeling goals, one
often needs to relabel static hand-labeled training sets. A number
of popular approaches for addressing this labeled data scarcity have
recently come up, including leveraging weak supervision[24], which
are higher-level approaches for (i) labeling training data and (ii)
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using them in training models at scale. Examples of such data la-
beling approaches include distant or heuristic supervision[18], or
constraints; data augmentation strategies to express class invari-
ances; and introduction to other forms of prior knowledge [25].
Techniques for leveraging such weak supervision signals include
fidelity weighted optimization [3] and pre-training models. The
overarching goal of both lines of work is to enable large scale train-
ing of neural models using weak supervision signals.

Considering the specific case of search and recommender sys-
tems, models are trained on implicit signals of user satisfaction,
which serve as proxies of true user satisfaction [14, 17]. However,
it is not uncommon to collect labeled data via crowd-sourcing or
via in-app surveys, wherein users provide explicit judgments about
their experience and satisfaction [15]. Both these forms of data:
large scale implicit interaction data and relatively small-scaled ex-
plicit user judged data have complimentary characteristics. While
implicit data is abundantly available, it is often noisy and heavily
dependent on interpretation by system designers - it may not accu-
rately reflect true user satisfaction. On the other hand, explicit data
from users is reliable and a stronger signal but is hard to obtain, at
scale.

In this paper, we consider the problem of learning from limited
data. Specifically, we assume access to a small strongly labeled
dataset (e.g. via explicit human judgments) and a larger weak su-
pervision dataset (e.g. from implicit feedback or data from other
tasks) and consider the task of training models by jointly leveraging
both these datasets. We propose a number of data mixing strategies
wherein a new dataset is created by mixing the strong and weak
supervision data via different techniques including similarity-based
and interleaving approaches. Additionally, we cast the problem of
leveraging weak supervision data in the form of subset selection,
and propose a submodular subset selection strategy [12, 16] which
jointly leverages notions of representativeness and informativeness
of the weak supervision instances.

Going beyond simple data mixing strategies, we then investigate
adaptive optimization methods to train neural models that allow
us to control the extent to which we make use of weak supervision
signals. The most common way to optimize deep neural models
is to employ moment based stochastic gradient descent optimiza-
tion algorithms (e.g. Adam, Adagrad) to perform optimization of
stochastic objective functions[6, 9]. We identify a key issue with
such momentum-based gradient descent approaches when learning
on weak supervision data. The unrelated training examples might
steer the gradient in the wrong direction, leading to suboptimal
training. To this end, we propose two adaptive learning strategies
which consider the importance of each data point and adapt the
learning strategy based on the training sample. Our first adaptive
learning strategy is a differential weighting scheme wherein we
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weight the gradient update adaptively based on the importance
of weak supervision datapoint. The second proposed strategy is a
momentum damped variant of Adam, a first-order stochastic op-
timization technique, which dampens momentum updates of the
optimizer based on label data fidelity, and is thus adept at handling
irrelevant data while training on weak supervision signals.

We compare and contrast the different strategies to learn from
limited labeled data on two different case studies: (i) user satisfac-
tion prediction for music recommendation and (ii) question-based
video comprehension. The first case study leverages implicit feed-
back signals as weak supervision data, and in-app survey responses
by users as ground-truth data, whereas the second video QA case
study works with distant supervision signals as weak supervision
data, and human judgments for questions and answers from videos
as strong data. Our findings suggest that mixing weak and strong
supervision data is often helpful, with significant improvements
in several metrics across both use-cases. Furthermore, adaptive
training strategies based on momentum damping outperform all
data mixing strategies.

2 RELATED WORK

Weak Supervision: The problem of handling noise has been the
focus of much attention in machine learning and most inductive
learning algorithms have a mechanism for handling noise in the
training labels. Removing noise from the data before hypothesis
formation has the advantage that noisy examples do not influ-
ence hypothesis construction. Learning from weak data sometimes
aims at encoding various forms of domain expertise or cheaper
supervision from lay annotators. Alternatively, some noise cleans-
ing methods have been proposed to remove or correct mislabeled
samples[2]. Some studies are showing that weak or noisy labels can
be leveraged by modifying the loss function[21, 28] or changing the
update rule to avoid imperfections of the noisy data[4, 13]. Further,
a growing number of tools enable labeling of weak supervision data
at scale [25].

Momentum based learning: The convergence of momentum
methods has been studied extensively, both theoretically and em-
pirically [8, 29, 31]. But there exist some flaws in existing meth-
ods hence, the following works motivate successful momentum
schemes. [26] explored the effect of momentum on the optimization
of neural networks and introduced the momentum view of Nes-
terov’s accelerated gradient. They focused on producing good mo-
mentum schedules during optimization to adapt to ill-conditioned
curvature. Adaptive gradient methods have been introduced to deal
with the ill-conditioned curvature that we often observe in deep
learning [9, 27]. These methods typically approximate the local
curvature of the objective to adapt to the geometry of the data. Our
work extends the use of momentum updating schemes conditioned
on weak and strong supervision.

3 LEARNING FROM LIMITED LABELS

The success of most deep neural models depends strongly on the
availability of large amounts of labeled and annotated data, which
is prohibitively expensive to obtain, especially for relatively new
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tasks. However, a large amount of labeled data may be available for
a different, yet similar task. In this section, we consider the scenario
where in addition to a small set of good quality labeled data for
this new task, a large amount of labeled data for a different task is
available. We propose a differentially weighted learning procedure
which builds on top of existing gradient descent based learning
algorithms and learns to leverage existing labeled data.

3.1 Definitions

We define key concepts of the dataset and supervision signals,
which are used throughout the paper.

Weak Supervision: Often we have supervision signals which are
derived via "weak annotators", or rules based on heuristics, patterns
or "weaker", biased classifiers trained on e.g. non-expert crowd-
sourced data or data from different, related domains. All such
weaker forms of supervision, constitute weak supervision. The
training data whose labels are obtained via any such weak supervi-
sion techniques are referred to as weak supervision dataset.

Ground Truth Supervision: On-task supervision signals derived
from human annotators, or explicitly obtained via user feedback
(e.g. surveys) constitute strong supervision signals. The training
data whose labels are derived from such strong, trusted sources of
supervision are referred to as ground-truth supervision dataset.

Note that we can generate a large amount of weak training data
at almost no cost using the weak annotator or weaker forms of
supervision. On the other hand, obtaining ground truth data is a
much harder and cost-intensive process. In this paper, we focus on
leveraging weak supervision data along with ground truth data to
efficiently train neural models for recommendations.

3.2 Notation

Formally, we denote an instance by a feature vector x € R4, and its
corresponding label by y € {—1, 1} for the binary classification case.
A dataset D = {xj, yi}fi , consists of || N|| training instances. We
work with two types of datasets: (i) ground truth data and (ii) weak
supervision data. Ground truth data is denoted by Dg = {x‘lg , y‘lg }f\i 1
, wherein the label y‘lg acts as ground truth label obtained via ex-
plicit human judgments. The weak supervision dataset is denoted
by Dy = {x}",y;}" f\:] 1> with the weak supervision label obtained
through one of the strategies described in Section 3.1. Assume that
we receive a small set of ground truth data (Dg) consisting of ex-
amples which are annotated with explicit labels, and an additional
relatively larger dataset of weak supervision signals (D), our goal
is to leverage these examples to learn an accurate machine learning
model ¢(6, x) : R4 — {0, 1} where 6 is the model parameters.

3.3 Problem Formulation

We hypothesize that the weak supervision data could be leveraged
with the ground truth dataset in different ways, that would give
improved performance over the case when only ground truth su-
pervision is used. Given access to a small amount of ground truth
data (Dg) and a large amount of weak supervision data (D,,), the
goal of this work is to devise training strategies which leverage
D,y with Dg to train the learning module $(6,x) : R4 —s {0,1}.
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Formally, we wish to devise training strategies Dy = f(D.y, Dg),
where Dy is the final dataset the model will be trained on and (., .)
represents different strategies to leverage datasets.

In contrast, we have only a limited amount of observations from
the true function, i.e. || Dy || > || Dgl|.

We start with considering different ways of combining these
datasets to train the model. We then proceed to devise special
training methodologies which rely more on ground truth data while
giving special attention to the weak supervision data. Section 4
gives detailed description of these approaches.

4 EXPLOITING WEAK SUPERVISION

In this section, we consider several ways of jointly leveraging D,
and Dy to train learning models. We begin by describing few dataset
construction strategies which create a new dataset composed of
training instances from both the weak and ground truth data. We
then proceed to propose alternative training strategies which pay
special attention to the strength of the supervision signal and exploit
it to train the model accordingly.

4.1 Data Mixing Strategies

4.1.1  Training on All/No External Data. We begin by simply using
all or none of the weak supervision data. In the case where none of
the weak supervision data instances are used, the model is entirely
trained on ground truth data. Specifically, the training dataset is
constructed as:

Dy = {(xf,4)} ¥(x.y) € Dy ¢Y)

On the other hand, when a model is trained using all weak supervi-
sion data points, the training data size increases by a big margin,
with most of the training data dominated by the weak supervision
data.

Dy = {5 ULy} Y(xi i) € Dy & (xj.57) € Dy (2)

Finally, a third way of combining data could be to train only on
the weak supervision signal. Such a training strategy is useful in
cases where the ground truth data is extremely limited and one
wants to use them only for evaluation purposes. The three data
mixing strategies could be summarized as follows:

Dy ={(x}".y}")} V(xj,y;) € Dy ®)

4.1.2  Similarity Thresholded Subset. A major drawback of includ-
ing all data points from weak supervision datasets is that when
some data is not relevant to the core task at hand or the label is
noisy, it leads the model astray and could harm the training process.
This is especially true in the case of neural models where noisy
labels could mislead the gradient convergence procedure giving
a false optimum. A way to alleviate this problem is to consider
only the training samples which are closely related to the instances
present in the ground truth sample.

Specifically, we select a subset of data instances from D,, which
are closest to the data points in the ground truth dataset in the
feature space. Let §/(x;, xj) denote the cosine similarity between
two feature vectors x; and xj, the training dataset is created as
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follows:
D,
1Dl ¥ (xj, x;)

_ wow Zl:l
De = (G UG o) st ==

> 7}
where 7 is a pre-defined similarity threshold. The above strategy
could easily be adjusted to give the top-k most similar data points
closest to the ground truth dataset.

4

4.1.3 Interleaved Learning. An alternate similarity based technique
would be to find the most similar weak supervision data point for
each datapoint in the ground truth data and include it in the training
dataset. Specifically,

1Dy

1Dy I D WPy (g, x1)
D= [ JHeEnueryy) st 2= 0
=1 j=1 v
)

A key difference between the interleaved and similarity thresh-
olded data mixing techniques is that the former considers similarity
per ground truth datapoint when making inclusion/exclusion de-
cision, whereas the latter computes the average similarity of a
weak supervision datapoint with the entire ground truth data when
deciding to include it in the training dataset.

4.2 Submodular Subset of Weak Supervision

In addition to the above mentioned data mixing strategies, we cast
the problem of leveraging weak supervision data as that of subset
selection, wherein we wish to select a subset of most useful weak
supervision data, based on the available strong supervision data
to train our models. Specifically, we propose a submodular subset
selection to find the optimal subset of weak data to be included in
training.

Submodular functions are discrete functions that model laws
of diminishing returns and can be defined as follows [20]: Given
a finite set of objects (samples) X = {xi,...,x,} and a function
f: 2% — R* that returns a real value for any subset S C X, f is
submodular if given S € §’, and x ¢ S’

fS+x) = f(S) 2 f(S"+x) - f(5) (6)

That is, the incremental "value" of x decreases when the set in
which x is considered grows from S to S’. A function is monotone
submodular if ¥S C S’, f(S) < f(S’). Powerful guarantees exist
for such subtypes of monotone submodular function maximization.
Though NP-hard, the problem of maximizing a monotone submodu-
lar function subject to a cardinality constraint can be approximately
solved by a simple greedy algorithm [20] with a worst-case approx-
imation factor (1 — e~!). This is also the best solution obtainable in
polynomial time unless P=NP [7].

Submodularity is a natural model for weak data subset selection
in our setting. Indeed, an important characteristic of any data-subset
selection technique would be to decrease the value-addition of a
new data instance x* € X" based on how much of that query
has in common with the subset of queries already selected (S). The
value f(w™|S) of an instance in the context of previously selected
subset of instances S further diminishes as the subset grows §’ 2 S.

Intuitively, an optimal subset of weak supervision instances
selected for training with strong supervision data should have
two characteristics: (i) informativeness, which measures the ability
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of an instance in reducing the uncertainty of the model and (ii)
representativeness, which measures if an instance well represents
the possible input patterns of data. Mathematically, the weak data
instance subset selection problem can be formulated as selecting
the subset of instances S which maximizes the value of f(S) where
f(S) captures both the representativeness aspect as well as the
informativeness aspects of the weak supervision instance.

To capture both these traits, we model the quality of the subset
as: F(S) = o(S) + (1 — p)¥(S) where ®(S) captures the repre-
sentativeness aspect of the instance subset (S) with respect to the
entire set of weak supervision data X while ¥(S) rewards select-
ing informative queries. The parameter f controls the trade-off
between the importance of representativeness & informativeness
while selecting queries.

4.2.1 Representativeness: (S). ®(S) can be interpreted either as
a set function that measures the similarity of instance subset S
to the overall query set Xw, or as a function representing some
form of "representation” of X" by S. Most naturally, ®(S) should
be monotone, as representativeness improves with a larger subset.
®(S) should also be submodular: consider adding a new instance
to two instances subsets, one a subset of the other.

We employ the same functional form of ®(S) as was adopted by
Lin et al[11, 12] and Mehrotra et al.[16]. Specifically, a saturated
coverage function is defined as follows

O(S) = Z min {Cx(S), aCx (X¥)}

xexw

™

where Cy(S) is a set based function defined as Cx(S) : 2° —
R and 0 < a < 1is a threshold co-efficient. Intuitively, Cx(S)
measures how similar S is to instance x or how much of the instance
x is covered by the subset S. We define the coverage function Cy (S)
in terms of the coverage of instances. More specifically, Cx(S) =
Yxes Y(x,x”) where ¢(x, x) > 0 measures the cosine similarity
between instances as in the previous section.

4.2.2  Informativeness: ¥(S). The ®(S) function described above
intuitively captures the notion of coverage or representativeness
by selecting subset of instances S which are most representative
of the entire set of weak supervision instances X*. While repre-
sentativeness is an important trait, we also wish to capture the
informativeness aspect of queries and select queries which are
most informative to the current version of the model. We formulate
the functional form of ¥(S) based on the ability of the instance to
perform model update. As a precursor, it is worth mentioning that
to define the function ®(S) we cluster weak supervision instances
into k-clusters and we associate each weak supervision instance to
one of these k-clusters. Formally, we define the ¥(S) function as
K

follows:
¥(S) :Z Z Yy

i=1 \\xeP;NS

®)

where P;, i = 1,...,K is the cluster-partition of the set of instances
X" into K-clusters and Yy captures the informativeness carried
by the instance x based on the current model. The function ¥(S)
rewards cluster-diversity along with valuing informativeness since
there is usually more benefit to selecting a instance from a cluster
not yet having one of its instances already chosen. As soon as an
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instance is selected from a cluster, other instances from the same
cluster start having diminishing gain owing to the square root
function (\/5 +V1 >3+ \/(_))

Many different ways exist to quantify the informativeness of a
weak supervision instance Yy, including the average or maximum
similarity of the instance to ground truth data, or the noise level
associated with the weak supervision instance, or the gradient
update this weak supervision instance would have resulted had
we used it to update parameters of the trained neural model. The
specific use-case and availability of appropriate information guide
the selection of the specific way to quantify such informativeness
measure.

4.2.3 Greedy Optimization. Having defined the individual func-
tions based on the different paradigms, we formulate the overall
weak supervision instance subset selection problem as the selec-
tion of the subset S of instances which maximizes the following
function:

FS) = B Z mm{z U(x,x"), a Z ¢(x,x’)}
xexw x'eS x'eXw
K )
=P DN
i=1 \\xeP;NS

Modelling the instance selection problem in such an objective pro-
vides many advantages. Firstly, the submodular formulation pro-
vides a natural way of coupling the different aspects of instance
selection. Secondly, the above formulation can be optimized effi-
ciently and scalably given the monotone submodular form of the
function F(S). Assuming we wish to select a subset of N weak su-
pervision instances from the total set of X instances, the problem
reduces to solving the following optimization problem:

(10)

While solving this problem exactly is NP-complete [7], techniques
like ILP [19] can be used but scaling it to bigger datasets becomes
prohibitive. Since the function F(S) is submodular, it can be shown
that a simple greedy algorithm will have a worst-case guarantee of
f(8) = (1- %)F(Sopt) ~ 0.63F(Sop:) where Sop; is the optimal
and S* is the greedy solution [7]. The greedy solution works by
starting with an empty set and repeatedly augmenting the set as

(11)

until we select the N number of instances of weak supervision in
the subset we intended. Finally, we use the selected subset of weak
supervision instances to enrich the training data:

§* =scxw,|s|<n F(S)

§ = S Uxexm\s F(qI5)

Dy ={(, )} U {(x}"y}") s.t.x)" €S} (12)

where S is the subset of weak supervision instances selected using
the submodular subset selection strategy.

While these strategies present different ways of creating a train-
ing dataset, the training methodology does not differentiate be-
tween instances from the ground truth dataset and weak supervi-
sion dataset. We next propose strategies which adapt the training
strategy based on the data instance.
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4.3 Differentially Weighted Learning

Beyond constructing augmented datasets, an additional way to
leverage weak training data is by adapting the training mechanism
of the model to take into account the label quality and trust. To
this end, we propose a Differential Weighting Learning strategy,
wherein we modulate the parameter updates to the training module
on a per-datapoint basis according to the quality and relevance of
the weak supervision sample to the task and ground-truth dataset.
A related approach was adopted by Dehghani et al. [3] to train a
student-teacher network with access to quality for each label.
Given a training example, stochastic gradient descent (SGD)
performs a parameter update for each training example 0 = 0 —
n. Vg J(0). Adaptive Moment Estimation (Adam) [9] computes
adaptive learning rates for each parameter. In addition to storing
an exponentially decaying average of past squared gradients, Adam
also keeps an exponentially decaying average of past gradients:

my «— Pr.mp_1+ (1= p1).g: (13)

o — Proe—1 +(1— f2).gp (14)
where m; and v; are estimates of the first moment (the mean) and
the second moment (the uncentered variance) of the gradients
respectively, hence the name of the method. These momentum
estimates are then used to update the parameters:

n
Or41 = 0r —
t+1 = 0t N

where m; = 1'_”—/;,‘ and 0; = # are bias-corrected moment esti-
1 2

(15)

nit

mates, m;, v; are exponential moving averages of the gradient and
the squared gradient, 1, f2 control the exponential decay rates of
these moving averages, m;, Uy are bias corrected estimates since
my, vy are initialized with vector of 0’s hence getting biased towards
zero, « is learning rate.

To enable differentially weighted learning, we build on top of
Adam and attempt to make it adaptive to each training sample.
Specifically, for each training instance contributed by the weak
supervision dataset, we compute its similarity to the ground truth
dataset and use it to determine the step size for each iteration
of Adam. So, intuitively, for data points contributed by ground
truth dataset, we have high confidence and a large step-size for
updating the parameters. However, for data points contributed by
the weak supervision dataset, we down-weight the training steps of
the gradient descent method. This allows the model to differentially
weight the importance of each training point and learn accordingly.

We propose a change in learning rate to give more weight to the
more trustworthy training samples.

n2 = exp[—y * (1 = Y (xj,x1))] (16)
where y is a scalar positive hyperparameter contributing small value
whenever training example is relevant and large value whenever
the training example is weak. ¢ helps us encode the weight of the
weak examples. Adam thus behaves like a heavy ball with friction,
which prefers flat minima in the error surface compared.

To quantify ¢/, we use average cosine similarity between high-
quality data and the weakly labeled data. This similarity helped with
weighing each training instance differentially based on how similar
itis to ground truth data. Often when similarity based quantification
is not preferred, one can consider alternate approaches, including
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Algorithm 1 Momentum damped Adam

Require: n Stepsize
Require: 1, f; € [0, 1):Exponential decay rates for the moment estimates
Require: f(0):Stochastic objective function with parameters 6
Require: 0y:Initial parameter vector
my <0 (Initialize 15 moment parameter)
vy <0 (Initialize 2" moment parameter)
t «0 (Initialize timestep)
while 0; not converged do
te—t+1
8 — VOf;:(6:-1) (Get gradients w.r.t. stochastic objective at timestep t)
my «— Pr.m_1 + (1 - B1).0(x;i).g+ (Update biased first moment)
0 — Prvp_1 4+ (1— ﬂz).gv(x,-).g'tz (Update biased second raw moment)
my — my/(1- ,Blt) (Compute bias-corrected first moment)
Oy — vy /(1= ﬁ;) (Compute bias-corrected second raw moment)
0y « 0,1 — 1.1,/ N3, + €) (Update parameters)
end while
return ; =0

marginal gain based quantification, which weights each instance
by the marginal gain offered by it to the pool of strong supervision
dataset based on the coverage function ® defined in Section 4.2.
Appendix A gives a step-by-step walk through of the algorithmic
details.

4.4 Momentum Damped Differentially

Weighted Learning

Instead of adjusting the parameter updates resulting from weak
supervision training data points, we propose an alternative defi-
nition of Adam wherein we purposefully dampen the momentum
updates based on our trust in the usefulness of the training in-
stance. Momentum is a simple and widely used trick which allows
gradient-based optimizers to pick up speed along low curvature
directions. Gradient descent methods SGD has trouble navigating
ravines, i.e. areas where the surface curves much more steeply in
one dimension than in another, which are common around local
optima. Momentum [22] is a method that helps accelerate SGD in
the relevant direction and dampens oscillations by adding a fraction
of the update vector of the past time step to the current update
vector.

As shown in Algorithm 1, Adam updates exponential moving
averages of the gradient (m;) and the squared gradient (v;) where
the hyper-parameters fi1, f2 € [0, 1) control the exponential decay
rates of these moving averages.

17)

v — Pavr-1 +(1- 2).g; (18)
We modify the Adam algorithm by including a weighting factor
which further dampens contribution stemming out of the current
training example’s gradient update if the current training sample
is contributed by weak supervision dataset. At each optimization
step, these velocities and momentum terms are updated and then
averaged to produce the final velocity/momentum used to update
the parameters. This updated iterative procedure can be written as
follows:

ms «— ﬁ].m[_l + (1 — ﬂl),gt

(19)
(20)

my «— Pr.me—1 + (1= B1).0(xi).9¢
v frory + (1= B2).(x1).g7
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Signal Description
session length duration of entire session in seconds
ms played total milli-seconds streamed

home dwell time
avg interaction time
time to success
songs played

no of interactions
nSlates

session duration minus downstream time spent streaming content
time spent on the Homepage interacting with slates

time until first stream

number of songs played

total number of clicks on Homepage

no of slates interacted with

didScroll whether or not the user scrolled

max depth number of slates vertically scrolled

no of exits number of exits from Homepage to any playlist
abandoned binary 0/1 if session was abandoned without interaction

Table 1: Description of user interaction signals used.

where the momentum damping co-efficient is defined based on rel-
evance of training example, or based on marginal gain in relevance
utility. For the case of the relevance of the training example, we
compute {(x;) as:

= g
1Dg |l

év(xi) _ Xj € Doy
1 Xi € Dg

while, for the case of marginal gain in relevance utility, we define
{(x;) as:

{(I)(XS Ux) —®(X%) x; € Dy

{(xi) =
1 Xi € Dg

with ®(S) denoting the coverage function defined in Sec 4.2 for a
set S. By taking advantage of how relevant or important a train-
ing instance is, momentum damped Adam can optimize well over
ill-conditioned curvature and adapt the training based on weak
supervision labels.

The different ways of leveraging weak supervision dataset via
data mixing strategies and weak supervision aware training, i.e.,
differential weight and momentum dampening, allows us to adapt
our training procedure based on ground truth and weak supervision
data instances. To show the utility of such approaches, we consider
two different use cases, discussed next.

5 CASE STUDIES IN MUSIC
RECOMMENDATION & VIDEO QA

To compare the performance gains obtained by leveraging weak
supervision signals, we consider two different use-cases. First, we
consider personalized music recommendation and investigate the
problem of predicting user satisfaction with the slate recommen-
dation. Second, we consider the task of video question-answering
from transcripts.

5.1 Case Study I: User Satisfaction with Slate
Recommendations

Detecting and understanding the implicit measures of user satis-
faction are essential for enhancing recommendation quality. Devel-
oping a better understanding of how users interact with such rec-
ommender systems and predicting user’s satisfaction is important
not only for improving user experience but also for effective and
efficient optimization of the recommendation algorithm. Since ob-
taining explicit feedback from users is prohibitively expensive and
challenging to implement in real-world systems, commercial sys-
tems rely on exploiting implicit feedback signals derived from user
activity. When users interact with the recommendations served,
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they leave behind fine-grained traces of interaction patterns, which
could be leveraged for predicting how satisfied was their experience,
and for developing metrics of user satisfaction [15].

Our first case study, we focus on satisfaction prediction problem
in a streaming music recommendation and obtain both explicit and
implicit signals of user satisfaction. Explicit labels from users are
treated as the ground-truth dataset (Dg) while implicit satisfaction
signals are treated as weak supervision dataset (D,,). We next briefly
describe processing to collect the two.

5.1.1 Dg = Ground Truth Data. We work with real-world user data
from Spotify, a large music streaming service, and conduct a large
scale in-app survey to collect judgments about intents and user
satisfaction. We trigger the in-app survey to a random sample of
over 3 million users and observe a response rate of 4.5%. In total,
we received responses from over 116000 users, resulting in over
200K judgments about intents and satisfaction combined. For each
session, we collected back-end logs of user interactions with the
slates of recommendation and extracted data for all the different
interaction signals mentioned in Table 1. For each session, we use
the intent selected by the user as the session intent and use the
satisfaction prediction label given by the user to train and evaluate
our satisfaction prediction models.

5.1.2 D, = Implicit Weak Supervision Data. The Homepage ren-
dered for a user is rich enough to allow him or her to interact with
it in a myriad of ways, including clicking on playlists, scrolling
vertically to view more slates, scrolling horizontally to view more
playlists in a specific slate, pausing to read and visually absorb
content, clicking and consuming content via streaming, among oth-
ers. While past work on understanding user interaction in mobile
search setting has proposed few signals [10, 30], we additionally
propose several new signals resulting from the specific Slate Rec-
ommendation scenario considered in this work.

We use back-end logs of user interactions and extract four differ-
ent types of interaction signals for each user session: (i) temporal
signals, (ii) surface-level signals, (iii) downstream signals and (iv)
derivative signals. Table 1 provides a detailed description of the
different interaction signals extracted for each user session.

For each user session, the corresponding features extracted (Ta-
ble 1) are used as feature vectors (x;) and a heuristic based satisfac-
tion label is assigned to each user session based on:

_1
Y1 = _1

Effectively, we consider extreme cases of user satisfaction and dis-
satisfaction, i.e. sessions wherein users have a long session and
they stream music are tagged as +1, while sessions wherein users
struggle are tagged as -1. This label serves as weak supervision
label for the SAT prediction problem.

dwell time > 20s A songs played=0 A did scroll =1

5.1.3  Predicting Satisfaction. Our main goal is to understand and
predict user satisfaction (SAT) using interaction data. To this end,
we extracted detailed user-interaction signals and identified dif-
ferent intents users might have. In this section, we leverage the
extracted signals and intents and present techniques to predict user
satisfaction using the signals. The neural model has input in the
form of user interaction signals, intents with weights on different

dwell time > 20s A songs played>5 A session length>500s
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Figure 1: Overview of video comprehension model

user interaction signals and intent. The model was trained on binary
cross-entropy. We use a neural model for SAT prediction which is
composed of several convolution layers, with few dense layers. We
used a minibatch size of 32, Adam for optimization as described
in [9] with hyperparameters such as learning rate of 0.004, f; as
0.9 and f2 as 0.996. Dropout with p = 0.2 applied to convolutional
layers. Hence, it is capable of giving different weight to different
training instances according to the relevance of the data.

5.2 Case Study II: Video Comprehension

As a second case study, we consider the task of video recommen-
dation in a question answering setting. Specifically, given some
question, we need to find the video and parts of the video which
contains the best possible answer based on information from video
transcripts. It is prohibitively challenging to collect explicit data
on videos since it requires a judge to watch multiple videos to
extract answers. This problem aligns well with the overall prob-
lem considered in the paper: we have access to a few sets of QA
pairs curated from domain experts and access to a larger additional
external data comprising QA training data from an unrelated do-
main (SQuAD[23]) which enhances our dataset. While a detailed
overview is beyond the scope of this work, below we briefly describe
the neural model used for the task of video recommendation.

5.2.1 D,y = Distant Supervision. We use the SQuAD dataset for
pre-training our deep neural model. The Stanford Question Answer-
ing Dataset (SQuAD) Rajpurkar et al.[23] is a dataset for machine
comprehension based on Wikipedia. The dataset contains 87k ex-
amples for training and 10k for development, with each example
composed of a paragraph extracted from a Wikipedia article and
an associated human-generated question.

522 Dy = Explicit Labels. We made use of Amazon Mechanical
Turk for getting labeled data for a total of 1021 videos with an-
swers. We followed a rigorous process for the video annotation
task, wherein for each question, a set of videos were annotated
by a minimum of 3 different human judges. Judges went through
a brief training video describing the task wherein they were ex-
plained and shown examples of question-answering tasks. Overall,
we obtained an inter-rater agreement of 0.69 (Fleiss” kappa) which
implies substantial agreement among judges. This explicitly labeled
data serves as the ground truth data for the video QA task.
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5.2.3 Gated Attention model for Video QA. We next briefly describe
the neural model used for recommending a video for a given ques-
tion. Given a question and any number of candidate videos, the
system must be able to come up with an appropriate answer for
the given question and recommend the video which contains that
answer. To extract answers from the video content, we worked with
transcripts data and propose a gated attention-based neural model
with content bifurcation module to break down a large piece of tran-
script text into small chunks and then perform QA on those chunks.
To tackle this problem, we have broken it into two sub-problems:-
Video retriever and answer generation.

For each question, the video retriever extracts the top-k videos
and tags them with transcripts. For each retrieved video, the con-
tent bifurcation module extracts meaningful chunks which are then
passed onto the gated attention module. Finally, the answer genera-
tion module considers each chunk and finds the answer boundaries
and outputs the confidence score for each chunk. The chunk rank-
ing module considers all chunks from all videos and ranks the
answers based on the model’s confidence scores and outputs the
final answer.

Given a question and a bifurcated chunk with tokens {q1, ..., gm }
and {cy, c2, ...., cn } respectively, we develop a gated attention LSTM
model which we apply on the chunk, to learn question represen-
tation and question-aware chunk representation, which are used
to detect answer spans. For a given question, we consider all the
retrieved videos, select relevant answers from each video and use
the above equation to find the top videos to be recommended for
any given question. Figure 1 gives a pictorial overview of the neural
approach employed for question specific video recommendation.

6 EXPERIMENTS

We next discuss results which compare the different proposed strate-
gies of learning from weak supervision data on the two case studies
described above. Unless otherwise stated, all evaluation results
reported in the paper are on a hold-out ground-truth dataset.

6.1 Impact of Weak Supervision

We begin by investigating the impact of including weak supervision
dataset when training a model. The All- and Sub- variants of the
methods denote the method trained using all data and subset of
data selected via submodular subset selection approach. We report
results for the best performing threshold values, and present results
in Tables 2and 3.

6.1.1 Case study: Video QA. Table 2 presents result which compare
the different data mixing strategies presented in Section 4.1. We
observe significant gains across all metrics when weak supervision
data is used, with over 40% gains in F1 score when both ground
truth and weak supervision signal is used. Interestingly for this task,
the ground truth data is not enough to train the model well, due
to which a model trained exclusively on weak supervision signal
outperforms a model trained on only ground truth data.
Furthermore, we see that intelligently picking up relevant weak
supervision data points results in improving performance. Both
similarity thresholded and interleaved mixing strategy perform bet-
ter than other techniques. Finally, we observe that the submodular
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subset selection results in the best performance across all data mix-
ing strategies. This is expected since submodular subset selection
builds on top of the intuition covered by the similarity thresholded
mixing strategy but also considers potential gradient update weight.
The relative weight of § = 0.3 (the ratio of weak data to strong data
was around 7:3 in most of our experiments) indicates the relative
importance given to gradient update weight.

6.1.2  Case study: User SAT prediction. Interestingly, we observe
that adding weak supervision signals in the SAT prediction task
hurts the performance of the model, with a model trained only Dg
only performing better than both D, as well as D,, U Dg train-
ing instances. This highlights that the labels provided by users
themselves are much more useful than the conservative satisfaction
labels generated using implicit feedback mechanism.

However, implicit feedback based weak supervision label could
still be used to improve predictive accuracy. We observe that when
considering only the most similar data points from the weak su-
pervision data, the model performs better than Dg only case. This
highlights that adding more training data which is similar to the
explicit data is indeed helpful. Similar to the Video QA task, inter-
leaved style data mixing strategy performs better than similarity
thresholded approach. Indeed, the interleaved approach selects data
points which are close to specific data points in the ground truth
data. Since the similarity thresholded data points consider overall
similarity, they may end up picking noisy datapoints whose average
similarity is high but individually, they may not be much relevant
to any ground truth data point. Finally, we observe that similar to
the video QA case, submodular subset selection outperforms all
other data mixing strategies.

6.2 Representativeness vs Informativeness

As demonstrated above, submodular subset selection of weak in-
stances to add to strong supervision data performs best among the
considered data mixing strategies. To better understand the perfor-
mance of the submodular approach, we conducted an experiment
on the video comprehension case-study of the relative importance
of the two aspects of representativeness and informativeness and
how they contribute to the overall model performance.

We observed that a relative weighting scheme of f§ = 0.3 (which
weighs representativeness-vs-informativeness in 3:7 proportions)
works best for weak instance subset selection, with a gradual in-
crease in performance as more training data is available. This high-
lights that while representativeness is important, selecting infor-
mative instances from the different cluster indeed helps.

6.3 Impact of Adaptive Training

We next investigate the benefit obtained due to training instance-
specific adaptive training. Based on the results obtained for differ-
ential weighting and momentum damped Adam training shown
in Tables 2 and 3, we observe that adaptive training methods per-
form better than all other data mixing approaches considered. This
demonstrates that equal importance should not be given to ground
truth data and weak supervision data. By merely adjusting the learn-
ing rate in gradient descent style optimizers based on the relevance
of weak supervision datapoint gives about 10% accuracy gain in
SAT prediction task and over 15% gain in video QA task.
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Approach F1 ‘ ndeg@1 ‘ ndcg@5 ‘ prec@1 ‘ prec@5

Dy only 0.34 0.43 0.31 0.45 0.29

D,, only 0.44 0.58 0.31 0.605 0.321

Dg UDyy 0.509 0.318 0.624 0.653 0.325
Similarity thresholded 0.512 0.629 0.324 0.658 0.33
Interleaved 0.52 0.635 0.362 0.664 0.38
Submodular 0.54 0.65 0.374 0.68 0.41
Differential Weighting (All) 0.57 0.67 0.403 0.7 0.43
Differential Weighting (Sub) | 0.59 0.68 0.426 0.72 0.44
Momentum Damped (All) 0.61 0.69 0.428 0.75 0.46

Momentum Damped (Sub) | 0.62*¢ | 0.72*%¢ | 0.438*% | 0.77°%¢ | 0.47*%

Table 2: Comparing data mixing strategies on Video QA task.
* and & signify statistically significant difference between
the method and the two best performing data mixing strate-
gies using y? test with p < 0.05

Approach Accuracy | Precision ‘ Recall ‘ F1Score

Dy only 0.55 0.60 0.54 0.57

D,, only 0.5 0.51 0.49 0.5
Dg U D,y 0.514 0.54 0.51 0.525

Similarity thresholded 0.59 0.62 0.58 0.6
Interleaved 0.6 0.62 0.59 0.605
Submodular 0.63 0.635 0.62 0.627
Differential Weighting (All) 0.632 0.64 0.62 0.629
Differential Weighting (Sub) 0.643 0.652 0.63 0.634
Momentum Damped (All) 0.65 0.66 0.63 0.645
Momentum Damped (Sub) 0.66*% 0.67°% | 0.65"% | 0.66™&

Table 3: Comparing data mixing strategies on SAT predic-
tion task. * and & signify statistically significant difference
between the method and the two best performing data mix-
ing strategies using y? test with p < 0.05

Furthermore, we observe that momentum damping for unre-
lated weak supervision datapoints has a positive impact on perfor-
mance. Training the model via momentum damped Adam optimizer
achieves the best performance overall, with 5% improvement over
differential weighting approach, and a substantial and statistically
significant 23% gain in accuracy over the approach of combining
all data points.

6.4 Amount of Weak Supervision Used

We additionally investigated the amount of weak supervision data
needed when training neural models for the video QA task. In
Figure 2, we present a comparison of the data mixing strategies
with the adaptive learning strategies: differential weighting and
momentum damped, across different amounts of training data. We
observe superior performance of the adaptive learning approaches
over data mixing approaches, with momentum damped learning
to perform best across all methods, metrics and amount of weak
supervision data used. Further, we observe a steady increase in
performance upon adding weak supervision signals. Indeed, adding
more relevant data from SQuUAD would expose the model to new
topics and questions, and the resulting coverage would help the
model perform better on the ground-truth data.
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Figure 2: Comparison of approaches for Video QA across three metrics and varying amount of weak supervision data.

6.5 Generalizability across Tasks & Models

User satisfaction prediction and question-based video recommenda-
tion are two separate tasks with little conceptual overlap. Evaluating
the proposed approaches on such different task highlights that the
results obtained are not a characteristic of a specific task or neural
model. Furthermore, the kind of weak supervision signal used in
the two tasks is also different. We leveraged implicit interaction
data from users to craft heuristic weak supervision labels for the
SAT prediction task, while we used distant supervision for the video
QA task. This highlights that the proposed approach is robust to
different kinds of weak supervision signals.

Finally, we adopt a different momentum-based approach: Nadam
[5] to investigate dependencies in the proposed approach on the
specific type of optimizer used. We obtained similar performance
gains when we replaced Adam optimizer in the neural training
process by Nadam; which demonstrates that momentum damping
is useful regardless of the specific optimizer used. We omit detailed
results for Nadam due to space constraints.

7 CONCLUSION

We address the problem of learning from limited labeled data by
proposing different data mixing strategies as well as proposing adap-
tive training algorithms, which enable the model to leverage weak
as well as strong supervision data. Our findings demonstrate that
momentum damped adaptive learning strategy is better than sim-
ply combining weak and strong labeled datasets. We contend that
the proposed techniques apply to other related problems around
learning with limited labels and provide practitioners with ways of
leveraging external labeled data.
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Algorithm 2 Differentially Weighted Adam

Require: n = 1172 Stepsize
Require: 1, B, € [0, 1):Exponential decay rates
Require: f(0):Stochastic objective function with parameters 6
Require: 0y:Initial parameter vector
myg <0 (Initialze 15’ moment parameter)
vy <0 (Initialze 274 moment parameter)
t «0 (Initialze timestep)
while 0; not converged do
te—t+1
g « VOfi(0:-1) (Get gradients w.r.t. stochastic objective)
my < f1.ms—1 + (1 — f1).8: (Update biased first moment)
0 — Prvp1+ (1 - ﬁz)‘g'f (Update biased second raw moment)
my — m/(1— ﬂf) (Compute bias-corrected first moment)
Uy — vy /(1= ,Bé) (Compute bias-corrected second raw moment)
n < 11 * 12 (Compute adaptive update of stepsize)
0, < 04_1 — n.m;/ W3, + €) (Update parameters)
end while
return 0; (Resulting parameters)

A APPENDIX A: DIFFERENTIALLY
WEIGHTED LEARNING

To help ease reproducibility, we provide a more detailed step-by-
step algorithmic walk through of the method here. Algorithm 2
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summarizes pseudocode for modulated Adam. Here, f(0) is a noisy
objective function which is differentiable w.r.t . We are interested
in minimizing the expected value of this function, E[f(0)] w.r.t.
its parameters 6. With fi(0), ...,, fr(8) we denote the realisations
of the stochastic function at subsequent timesteps 1, ..., T. The
stochasticity might come from the evaluation at random subsamples
(minibatches) of datapoints, or arise from inherent function noise.
With g; = Vf;(0) we denote the gradient, i.e. the vector of partial
derivatives of f;, w.r.t 6 evaluated at timestep t.

B APPENDIX B: HYPERPARAMETER
SEARCH

To make fair comparison across different techniques, we use Sequen-
tial Model-Based Optimization[1] to search for best hyperparame-
ters for each approach. For both case-studies, we use the validation
dataset for hyper parameter search, which are then used to per-
form evaluation on test set. We conduct hyperparameter search
for similarity thresholds, learning rates and example weights as

applicable.
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