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Abstract—We present Ultron-AutoML, an open-source, dis-
tributed framework for efficient hyper-parameter optimization
(HPO) of ML models. Considering that hyper-parameter opti-
mization is compute intensive and time-consuming, the frame-
work has been designed for reliability – the ability to successfully
complete an HPO Job in a multi-tenant, failure prone environ-
ment, as well as efficiency – completing the job with minimum
compute cost and wall-clock time. From a user’s perspective,
the framework emphasizes ease of use and customizability. The
user can declaratively specify and execute an HPO Job, while
ancillary tasks – containerizing and running the user’s scripts,
model checkpointing, monitoring progress, parallelization – are
handled by the framework. At the same time, the user has
complete flexibility in composing the code-base for specifying the
ML model training algorithm as well as, optionally, any custom
HPO algorithm. The framework supports the creation of data-
pipelines to stream batches of shuffled and augmented data from
a distributed file system. This comes in handy for training Deep
Learning models based on self-supervised, semi-supervised or
representation learning algorithms over large training datasets.
We demonstrate the framework’s reliability and efficiency by
running a BERT pre-training job over a large training corpus
using pre-emptible GPU compute targets. Despite the inherent
unreliability of the underlying compute nodes, the framework
is able to complete such long running jobs at 30% of the cost
with a marginal increase in wall-clock time. The framework also
comes with a service to monitor jobs and ensures reproducibility
of any result.

Index Terms—Hyperparameter optimization, Machine Learn-
ing, Deep Unsupervised/Semi-supervised/Representation/ Self-

supervised Learning

I. INTRODUCTION

Developing production grade AI systems for NLP or vision-
based applications often requires training Deep Learning mod-
els in self-supervised/unsupervised mode followed by further
finetuning in a supervised or semi-supervised mode for the
task of interest [22], [25], [47], [52]. The training process
itself is long-running since it needs to sweep over very
large datasets, while the underlying models are memory and
compute intensive, requiring large GPU units for speed-ups.

Additionally, the models need to be extensively fine-tuned
for hyper-parameters such as the learning rate, regularization
terms such as drop-out and architecture related choices related
to the depth and width. This entails running many Deep
Learning training jobs, each with a different hyper-parameter
configuration, in parallel, or, if used in conjunction with a
hyper-parameter optimization algorithm, sequentially with a
lower degree of parallelism.

Training ML models at this scale and level of complexity
requires access to an on-premise distributed computing envi-
ronment or a cloud computing platform such as AWS, Azure
or GCP. It also places additional burdens on the ML model
developer: she needs to monitor and manage multiple training
jobs, cater for various failure scenarios, and economize for
compute. Additionally, most on-premise cluster environments
run in multi-tenant mode, imposing additional headaches such978-1-7281-6251-5/20/$31.00 ©2020 IEEE



as failure to provision the required compute for triggering the
user’s job.

Keeping these considerations in mind, we propose Ultron-
AutoML, an open-source, distributed framework for easy spec-
ification and efficient execution of ML model hyper-parameter
optimization (HPO) jobs. The Ultron-AutoML framework can
be used by practitioners and researchers alike to develop pro-
duction grade ML models as well as benchmark alternate ML
algorithms, Deep Learning architectures and hyper-parameter
tuning strategies. 1

II. BACKGROUND

A. Hyperparameter Optimization Review

The importance of tuning ML model hyper-parameters
in the ML development cycle cannot be overstated: [40]
shows that the LSTM architecture, proposed way back in
1997, outperformed two recent architectures, Recurrent High-
way Networks [55] and NAS [56], on language modelling
benchmarks after being tuned for regularization. In a similar
vein, the original GAN’s performance was found to be on
par with contemporary versions after it was given a bigger
computational budget for tuning hyper-parameters [37].

Hyperparameter Optimization (HPO), also referred to as
AutoML in the literature, can be cast as the optimization of an
unknown, possibly stochastic, objective function mapping the
hyper-parameter search space to a real valued scalar, the ML
model’s accuracy or any other performance metric on the vali-
dation dataset. The search-space can extend beyond algorithm
or architecture specific elements to encompass the space of
data pre-processing and data-augmentation techniques, feature
selections, as well as choice of algorithms. This is sometimes
referred to as the CASH (Combined Algorithm Search and
Hyper-parameter tuning) problem for which algorithms have
been proposed [28], [48].

Neural Architecture Search (NAS) is a special type of
HPO where the focus is on algorithm driven design of neural
network architecture components or cells [26]. Models trained
with architectures composed of these algorithmically designed
neural network cells have been shown to outperform their
hand-crafted counterparts in image recognition, object detec-
tion [57], and semantic segmentation [21], underscoring the
practical importance of this field.

Random Search [18] and Grid Search are effective HPO
strategies when the computational budget is limited or the
hyper-parameter search space is high dimensional. Both are
easy to implement and completely parallelizable. Random
Search is also widely regarded as a good baseline for bench-
marking new hyper-parameter optimization algorithms [33].

Bayesian Optimization (BO) is a dominant paradigm for
HPO [20], [27], [45]. Here, the objective function is modeled
as a Gaussian Process [50], with the Kernel design reflecting
assumptions about the objective function’s smoothness prop-
erties. Under this assumption, the posterior distribution of the
validation score for a candidate architecture is a Gaussian

1http://github.com/armlight/ux

1: procedure GENERIC-HPO-ALGORITHM
2: Initialize State
3: while stopping criterion is False do
4: Sample a batch of candidate architectures
5: Fetch validation scores for these architectures
6: Update state based on fetched validation scores
7: end while
8: end procedure

Fig. 1. A generic HPO algorithm

whose mean and variance can be computed in closed form.
The BO algorithm also needs to specify an acquisition strategy
that balances exploit (choose an architecture with high mean)
against explore (choose an architecture with high variance).
Probability of Improvement and Expected Improvement (EI)
[31], Entropy Search [30], GP Upper Confidence Bound [46]
are some principled acquisition strategies to balance explore-
exploit and find optimal architectures within an exploration
budget. While BO based HPO is inherently sequential, the
parallelism offered by multi-core or distributed computing
platforms can be leveraged to sample batches in a principled
manner such as Gaussian Process Bandit Optimization [24] or
Monte Carlo acquisition for parallelizing BO [45]. Working
with batches speeds up the search and is useful for HPO with
large computational budgets.

Other HPO paradigms include evolutionary learning, model
free Reinforcement learning (RL) and gradient based ap-
proaches. In evolutionary learning models, inspired by genetic
evolution, the architectures are modeled as gene strings. The
search proceeds by mutating and combining strings to discover
promising architectures [43], [44], [51]. RL based techniques
[17], [32], [56], [57] specify a policy network that learns to
output desirable architectures. Search proceeds by training the
policy network using Q-learning or policy gradient. These
techniques are flexible in that they can search over variable
size architectures and have shown very promising results for
NAS. Gradient based methods specify the objective function
as a parametric model and proceed to optimize it with respect
to the hyper-parameters via gradient-descent [35], [38], [39].

Abstractly, a generic HPO algorithm distinct from Random
Search or Grid Search maintains state and repeats steps
based on a state-update procedure and a sampling procedure
shown in Fig. 1. This abstraction can inform the design of a
distributed framework that can support any HPO algorithm.

B. Related Work

AWS Sagemaker [1], Azure Machine Learning [2] and
Google Cloud AI platform [6] are cloud-based services for
hyper-parameter tuning. All three allow users to submit ML
model training code-bases along with hyper-parameters to
be tuned. However, the user can only pick one of their
supported hyper-parameter optimization algorithms. There is
limited scope for customizing these hyper-parameter tuning
strategies or specifying a new strategy as part of the user’s
code-base.



Open-source frameworks include Hyperopt [19], Auptimizer
[36], Katib [54] and Tune [34]. Auptimizer and Tune have
been designed for ease of use and extendibility. They can inte-
grate with multiple cloud platforms but they are not designed
for reliability and economy of compute in a failure prone,
multi-tenant environment. Hyperopt supports Random Search
and Tree Parzen Estimator (TPE) but has limited support for
scalability and distributed training.

Katib comes closest to Ultron-AutoML in that it is designed
with Kubernetes [10] as the backbone. However, with Katib,
the onus of containerizing ML model training jobs and hyper-
parameter optimization jobs lies with the user. Further, Katib
doesn’t cater to failure scenarios for ML training jobs. This
means the user needs to write code to resume training from a
checkpoint.

III. TERMINOLOGIES

We define the following terms that will be used in the rest of
the paper for describing the working and design of the system:

A HPO Job refers to a user’s request to execute an HPO
algorithm and return the best trained ML model within a
computation budget. The user’s request will contain the code-
base to train an individual ML model (referred to as ML
training job) as a function of a HP configuration and
the training datasets. The HP configuration is a dictionary
object mapping hyper-parameters to their values. Scores are
validation and test metrics of the model trained using a hyper-
parameter configuration.

An experiment refers to running an independent set of HPO
Jobs, each HPO Job taking the same payload but only differing
in the starting seed. The underlying HPO Jobs are referred to
as trials. The experiment then reports the statistics – mean
and std-deviation – of the metric of interest from the trials.
The experiment allows the user to measure the performance of
the HPO algorithm or underlying ML algorithm. The Ultron-
AutoML framework ensures that the results of an experiment
are reproducible.

IV. DESIGN

Ultron-AutoML can be installed to run as a service on
any on-premise Kubernetes cluster or a cloud platform such
as AWS, Google Cloud or Azure ML. From a performance
perspective, the framework’s design has been governed by the
following aspects:

• Reliability: We define reliability as the likelihood that a
user’s HPO Job gets completed in a specified period of
time. Given that the HPO Job is long-running and oper-
ates in a multi-tenant resource constrained environment,
the framework should cater to various failure scenarios
and be resilient to high load factors.

• Efficiency: The framework should complete a user’s job
in minimum time and compute cost. To do so, the
framework must fully leverage the parallelism offered
by the user’s HPO algorithm, ensure high availability of
various components, and durably maintain job state to
ensure recoverability. In certain scenarios, the user should

1 {
2 "model_classname" : "Model",
3 "module_name" : "train",
4 "package_name" : "modelpkg",
5

6 "hp_ranges" : {
7 "optimizer": ["adam","sgd","rmsprop"],
8 "pca_components": [50, 51, 52],
9 "num_layers": [1, 2, 3, 4],

10 "lr": [1e-3, 5e-3, 1e-4]
11 },
12 "strategy" : "RANDOM",
13 "num_iterations" : 150,
14 "jobname" : "SampleModel",
15 "parallelism_fact" : 8,
16 "compute":"gpu",
17 "file_name":"/sample_model.tar.gz",
18 "cpu_per_pod":"5",
19 "memory_per_pod":"100000Mi",
20 "gpu_per_pod":"1"
21 }

Fig. 2. JSON encoding HPO Job specification

also be able to trade-off wall-clock time against compute
cost.

• Scalability: The framework should scale with job load
(determined by number of user requests and average size
of a request), if running on a cloud platform.

From a user’s perspective, the framework’s design empha-
sizes ease of use, flexibility and customizability. The user can
declaratively specify and execute the salient aspects of a HPO
Job, avoiding the need to write boilerplate code. The user can
focus instead on code to implement the ML model training
algorithm and, optionally, any custom HPO algorithm.

A. Specifying and Running an HPO Job

The user submits a HPO Job via HTTP POST method. The
HTTP POST payload, shown in Fig. 2, is a JSON object that
fully defines the HPO Job. The JSON object values include
the packaged code-base for executing a model training job, the
hyper-parameter search space, the choice of hyper-parameter
tuning strategy from supported strategies – Random Search,
TPE [20], and REINFORCE based methods [32]. The overall
computational budget, characterized in terms of number of
training jobs, is set via the num iterations key.

The user can also specify compute targets for training
jobs via the cpu per pod, memory per pod and gpu per pod
keys. Finally, the user can speed up training by setting the
level of parallelism via parallelism fact. Ultron-AutoML will
make a best effort attempt to provide the specified level of
parallelism subject to availability of computational resources.

The user has complete control and flexibility over compos-
ing the model training code-base, including choice of depen-
dencies. The user can specify these dependencies, including
any version of popular ML frameworks such as Pytorch [13],
Tensorflow or scikit-learn along with other libraries, in the
setup.py file. The Ultron-AutoML framework manages the
installation of these dependencies and execution of the training
job as a containerized application (refer section V-B).



1 from setuptools import setup
2 setup(install_requires=[’torch>=0.4.1’,
3 ’numpy’,
4 ’boto3’,
5 ’requests’,
6 ’tqdm’,
7 ’regex’], other_entries)

Fig. 3. Custom libraries in setup.py

1 class ModelInterface:
2 def score(self, hyperparameters,
3 checkpoint_path, resume):
4 """score the hyperparameter"""
5 pass

Fig. 4. Interface for the ML model score function

Within the user supplied code-base, the user only needs
to write a class implementation for the interface in Fig. 4.
The abstract method score takes as argument, hyperparameters
which is an HP configuration object and returns a score.

B. Bring Your Own Hyperparameter Optimization Algorithm

The user can specify a custom HPO algorithm by writing a
class for the interface based on the abstraction in Fig. 5. The
class needs to implement the following methods:

• sample hyperparameter candidates takes as argument an
integer N and returns a set of HP configurations of size
N .

• update state takes as argument a set of tuples, whose
components comprise a HP configuration and associated
ML model validation score, and updates some internal
state.

C. Architecture Overview

To achieve reliability, efficiency and scalability, Ultron-
AutoML uses Kubernetes. All components processing a HPO
Job run as containerized applications on Kubernetes pods
with Controllers. Components are loosely coupled using a
messaging system.

For scalability, we rely on the Kubernetes cluster auto-
scaler. The cluster auto-scaler minimizes node under-
utilization and therefore compute cost by dynamically com-
missioning and decommissioning nodes. Kubernetes can also
shift in-progress jobs out of unavailable nodes to available

1 class HPOAlgorithmInterface:
2 def sample_hyperparameter_candidates(self, n):
3 """Sample n candidate HP configurations"""
4 pass
5

6 def update_state(self, hyperparameter_candidates
, validation_scores):

7 """Sample N candidate HP configurations"""
8 pass

Fig. 5. Interface for the HPO algorithm

ones. This allows us to effectively leverage intrinsically unre-
liable computes like pre-emptible GPU nodes which are up-
to 70% more cost effective than regular nodes for training
models.

The messaging system is implemented with RabbitMQ [11]
which is the queue orchestrator. A downstream component
(a consumer) uses positive and negative acknowledgments for
respectively queuing and dequeuing messages. When a con-
sumer detects a problem within itself, or within a downstream
component, it uses a negative acknowledgment with a timer to
perform a delayed retry. The queue orchestrator also maintains
heartbeats with consumers to detect dead consumers and to re-
queue any messages which were being processed by them.

Queues are mirrored for high availability. Certain com-
ponents require a key value store for which we use Redis
[14]. It is made highly available using Redis sentinels. For
durability of Redis and RabbitMQ, we rely on persistent
volumes mounted on their pods.

A high-level view of the process flow of the HPO Job is as
follows:

1) The user fires an HTTP POST request containing the
HPO Job payload shown in Fig. 2.

2) The Ingress Controller forwards the incoming request
to the Entry Point Service, which validates the request
and forwards it to the On Demand Containerizer.

3) The On Demand Containerizer creates master and
worker images based on the user-supplied code-base.
The master and worker images implement the interfaces
in Fig. 5, Fig. 4 respectively. Finally, it forwards the
request to the Job Agent.

4) The Job Agent acquires resources from the Resource
Limiter, launches the master and creates two queues:
Work queue, Results queue.

5) The master, on initialization, starts a pool of parallel
worker pods. The master and workers co-ordinate via
the Work queue, Results queue to run the HPO algorithm
to completion.

6) Finally, the Completion Manager deletes the master,
associated workers, Results queue and Work queue,
marking the end of the HPO Job.

V. REQUEST LIFECYCLE

A. Ingress and Entry Point Service

The Ingress serves all requests originating outside the
cluster. It redirects an incoming HTTP POST based new HPO
Job request to a Kubernetes Service called Entry Point Service.
Upon receiving the request, the Entry Point Service validates it,
uploads the user’s code-base to a persistent store, and forwards
the request to the Processing queue.

B. On Demand Containerizer

The On Demand Containerizer is a Kubernetes Deployment
that creates images for the master and associated workers. It
functions as follows:

1) Consumes a message from Processing queue



Fig. 6. Architecture of the platform

2) Creates worker image: Selects a base worker image as
per the user’s request. Every model code-base requires
a different set of toolkits and the platform comes with
a choice of worker images, each containing a standard
ML toolkit combination.

3) Downloads the user code distributable from the persis-
tent store, installs it and all its dependencies into the base
worker image. It also installs worker boilerplate logic
which manages communication with the Work queue,
Results queue, heartbeats and acknowledgments into the
base image.

4) If the user has supplied a custom HPO algorithm, it
creates a custom master image.

5) Pushes the images into a pre-configured registry and
forwards the request to the next queue in the pipeline,
the Containerization Complete queue.

C. Resource Limiter

To make the platform multi-tenant, there is a need to
safeguard against over-consumption of resources by any ten-
ant. For this, a Resource Limiter imposes an upper limit
(max resources) on resource consumption. One unit of a

resource is defined as one GPU or one CPU. The quantum of
resource which the limiter can allocate or de-allocate is the
parallelism fact (P ) times the cpu per pod or gpu per pod
(NR) for an HPO Job as shown in Fig. 2. The Resource
Limiter is a semaphore resource counter, in Redis. It re-
lies on race-condition safe operations: INCRBY (W,N) and
DECRBY (W,N) (“increment/decrement integer W by N”)
[8] [9] [3]. We optimistically increase this semaphore before
the master pod is started. The procedure is shown in Fig. 7.

D. Job Agent

The Job Agent is responsible for acquiring resources via
the Resource Limiter and on successful acquisition, setting
up components for downstream steps. By design choice, the
Job Agent is a singleton because it acquires resources. The
Kubernetes Deployment Controller ensures that despite being
singleton, it is never a single point of failure. It functions as
follows:

1) Consumes a message from the Containerization Com-
plete queue

2) Creates the job’s Work queue, Results queue and inserts
a sentinel into the Work queue.



1: procedure LOCK-RESOURCES(P,NR)
2: Rreq ⇐ P ·NR

3: E ⇐ Rreq + resource counter
4: if E > max resources then
5: Re-queue request for delayed retry
6: else
7: INCRBY (resource counter,Rreq)
8: Trigger Master Start
9: if Master Start Failed then

10: DECRBY (resource counter,Rreq)
11: Re-queue request for delayed retry
12: end if
13: end if
14: end procedure

Fig. 7. Resource Locking Procedure

3) Spawns a Data Manager for the job
4) Acquires resources via the Resource Limiter and spawn

the job’s master pod.

E. Master and Workers

The master and worker pods execute the HPO Job as
follows:

1) The master pod samples HP configurations and fetches
their scores by calling a stub of the model’s score
function as in step 5, Fig. 1. When the stub is called, the
framework pushes the HP configurations into the Work
queue and the master pod waits for their scores on the
Results queue.

2) A worker-crew model [29] is used to score the HP
configurations. The framework spawns a pool of worker
pods. Each worker pod consumes a HP configuration
from the Work queue, scores it, and writes the score to
the Results queue.

3) When all scores are in, the master pod stops waiting and
resumes from step 6, Fig. 1. When the stopping criteria
is fulfilled, it sends a message to the Completion queue.

The master pod caches all scores in Redis with the HP
configuration as the keys. This allows scores of duplicate HP
configurations to be retrieved from the cache instead of a fresh
scoring.

The master and worker pods are tracked by separate Job
Controllers. The platform uses the Jobs Controller because
it supports a restartPolicy of onFailure. This policy setting
releases all resources consumed by the worker and master
pods when they successfully terminate.

We use one worker pod mapped to one Job Controller
as opposed to multiple worker pods mapped to one Job
Controller because we observed that in the presence of the
cluster auto-scaler, the latter option results in a faulty infinite
loop.

F. Handling master pod failures

The master pod checkpoints its state after each iteration in
Fig. 1. If it fails, the Job Controller restarts it and it makes

Fig. 8. Master and Worker

a recovery using the most recent checkpoint. Since the scores
are also cached by the master pod in Redis, they too remain
intact during master pod failure.

G. Handling worker pod failures

Negative acknowledgments, heartbeats and delayed retries
ensure no HP configuration is lost when worker pods fail.
Since worker pods are tracked by Job Controllers, a minimum
number of them is always maintained in the pool. Model
checkpointing ensures that the ML training job does not start
from scratch when the worker pods themselves restart.

H. Checkpointing

Model checkpointing is critical because training can be
preempted due to node failure. Model checkpoints can be
several Gigabytes in size and are created every few minutes
during training. With multiple HPO Jobs running concurrently,
the checkpoint creation rate can be very high.

Using a NFS like Gluster [5] entails high storage costs
and complexity. Further, NFSes are typically shared across
an organization and disproportional load of the checkpoints
may also result in its outage impacting other applications. We
therefore use object stores, which are more cost effective, for
checkpointing.

Object stores can have lower write speeds which can be-
come a bottleneck for the training thread. To mitigate this, the
thread only writes the checkpoints to a checkpoint path on the
locally attached ephemeral storage of the node which is as fast
as writing to a local disk.



These checkpoints are synchronized to the object store by
a separate container running on the worker pod. The imple-
mentation of this container can be extended to incorporate
the efficient upload implementation for a cloud provider. For
example, a concrete implementation of this container which
comes with the platform uses gsutil with parallel file-chunk
upload for syncing to Google Cloud Storage Buckets. The
checkpoint recovery container runs immediately before the
score function is called. It fetches the latest checkpoint from
the object store and places it in the checkpoint path. This path
is then passed as an argument to the score function from where
the model can recover it’s state.

This container can also be extended. Models can save
checkpoint files within separate folders named as per the
respective epochs. As soon as all checkpoint files for an
epoch have been written to its corresponding folder, the model
can create an indicator file inside it which commands the
checkpoint syncer to upload the epoch’s checkpoint folder
to the object store. During training, the checkpoint recovery
container retrieves all folders from the object store, sorts them
in descending order to get the checkpoint files for the latest
epoch.

I. Data Manager

For training models over large data sets with deep un-
supervised or semi-supervised algorithms, the Data Manager
component implements a data pipeline which streams shuffled
and augmented batches of training data to the worker pods.
The Data Manager component shown in Fig. 9, is a set of
pods, tracked by a Deployment Controller and it’s REST API
exposed via a Kubernetes Service. Multiple pods ensure high
availability and the Deployment Controller ensures reliability.
All worker pods in an HPO Job receive their training batches
from a common Data Manager component.

Since the Data Manager pods run parallelly with the worker
pods, it ensures that training batches are always available for
consumption by the training GPU, thereby minimizing data
starvation. The data pipeline is implemented using Tensorflow
tf.data [16] and provides interfaces for the user to specify data
augmentation operations.

Since the model training may be implemented using a
different framework like PyTorch [13], the framework enables
inter-operability between Tensorflow and frameworks such as
PyTorch. It works as follows:

1) During training, inside the Data Manager, the data
from the object store is incrementally streamed, passed
through the shuffling-augmenting-batching operations
and the output batches are pushed into the tf.data Queue.
When the Data Manager API Controller receives a
request for a set of training batches, it dequeues them
from the tf.data Queue and serves them. The pipeline
works to ensure that the tf.data Queue is always filled
to capacity. The Data Manager is multi-threaded, with
a pipeline running in each, all injecting data into the
tf.data Queue.

Fig. 9. The Data Manager and Worker Interaction

2) A client of the Data Manager API Controller, named the
Data Manager API Client, which comes pre-packaged
inside the training container of a worker pod, makes
calls to the Data Manager API Controller for receiving
training batches. These are pushed into the training
batch queue from where they are consumed by the GPUs
for executing the gradient descent steps. The client and
the gradient descent run on different threads with the
former on a CPU and the latter on a GPU.

J. Completion Manager

The Completion Manager frees up resources, executes final-
izers and marks the completion of the HPO Job. It functions
as follows:

1) Consumes a message from Completion queue
2) Frees-up resources by calling the Resource Limiter

which in turn will decrease the resource counter.
3) Executes all finalizers: For example, certain flows may

want to ensure that a particular checkpoint exists on the
object store before deleting the worker pods. This is the
case because the synchronization of checkpoints to the
object store may lag the training itself due to low write
speed of the object store.

4) Deletes all queues created for the job i.e. the Work
queue, Results queue to free-up memory on the Rab-
bitMQ cluster. Deletes the master and worker Job Con-
trollers. Even though the pods terminate on their own,



their Controllers need deletion to eliminate potential
resource leaks.

5) The HPO Job is marked complete

VI. REPRODUCIBILITY OF RESULTS

Reproducibility is important in cases where researchers
would want to use the platform for benchmarking. The plat-
form can run in a mode which guarantees reproducible results
for GPU based models. This is achieved by having a support
for setting seeds in the entire flow and in case of Tensorflow
models, by imposition of version standards not plagued by
the problem of in-determinism. Problems of in-determinism in
Tensorflow have been widely studied and solutions proposed
[4]. Base worker images with Tensorflow setups supporting
reproducibility have specifically been pre-packaged for this
purpose with the platform.

VII. MONITORING A USER’S JOB

An HPO Job is monitored by an HPO Job portal , a web
application written in Angular 8. The HPO Job portal displays
the degree of completion, best result obtained thus far etc.

The portal communicates with a REST API which fetches
the data from Redis for metrics that need to be displayed.
Since the master pod reads and writes to the Redis cache,
the portal reads the same and displays near real-time accurate
information to the user. The REST API and the portal are
deployed as a set of pods, tracked by a Deployment Controller,
load balanced by a Kubernetes Service.

VIII. RESULTS AND CASE-STUDIES

We present results from three case-studies to demonstrate
different performance aspects of the Ultron-AutoML frame-
work. In the case study under section VIII-A, we investigate
the ability of the framework to reliably and efficiently com-
plete a BERT pre-training job. In the case study under section
VIII-B, we assess the ability of Ultron-AutoML to effectively
parallelize an HPO Job and reduce wall-clock time. In the
case study under section VIII-C, we showcase how Ultron-
AutoML can be used to benchmark HPO algorithms. All
case studies were run by installing Ultron-AutoML on Google
Cloud Platform.

A. Running a BERT pre-training job

Pre-training a BERT model [25] is both time and compute
intensive. Moreover, the pretraining task requires a huge
amount of data to learn meaningful features. Depending on
the volume of training data, the pre-training job could take
several days even when using multiple GPUs. So, it becomes
essential for the platform executing such jobs to be reliable
and efficient. We show that Ultron-AutoML is able to reliably
execute such jobs while at the same time be cost efficient.

This case study presents a modification of the BERT pre-
training task [25]. We perform finetuning over the pretrained
weights instead of training them from scratch. The problem
comprises of two tasks:

TABLE I
EXPERIMENT SPECS FOR MASKED LM AND SENTENCE PREDICTION

Number of documents 9 Million
GPU Family Tesla V100
GPUs per Worker Pod 4
Total Checkpoints Created 270 Gigabytes
Epochs 2
Node Type Pre-emptible, Non Pre-emptible Nodes

Fig. 10. Trade-off between cost and time efficiency

1) Masked Language Model: For a given sequence of cor-
rupted tokens, w1, wmask, w3, . . . , wn, predict the masked
token using contexts from both left and right of it.

2) Next Sentence Prediction: Given a pair of sentences, pre-
dict whether the pair consists of consecutive sentences
or not.

The experiment specifications are listed in Table I. The
Data Manager ensures robust and reliant data loading. Also,
the checkpoint recovery feature as provided by the platform
ensures that if there is a failure at any point, the checkpoint
can be restored, and training can continue from that point
onward which is critical for such time intensive jobs. Results
are presented in Fig. 10.

As it is evident from the figure, the run-time on the
pre-emptible compute is slightly higher but the reliability
of Ultron-AutoML platform and the efficiency of the Data
Manager leads to nearly 70% cost savings.

B. Finetuning a BERT model with limited labeled data

A pretrained BERT model can be fine-tuned with very
little labeled data for downstream applications such as text
classification. Performance of the text classification model can
be further improved by tuning for a key hyper-parameter: the
number of training steps. Limited labeled data implies a small
sized validation data-set, posing a problem for tuning hyper-
parameters [41].

We get around this via a modified K-fold cross-validation
algorithm. We train K BERT models independently for a
predetermined number of training steps. We accumulate the
validation metrics at predefined training intervals for all K



Fig. 11. Effect of increasing workers

TABLE II
EXPERIMENT SPECS FOR MODIFIED K FOLD

Training Points 5000
GPU Family Tesla V100
GPUs per Worker Pod 2
Hyperparameter Space {number of steps}
Method Modified K-Fold Cross Validation
Pretrained Model BERT Base
Training Type All BERT layers opened for fine-tuning
Max Steps 10,000
Node Type Pre-emptible Nodes

models. By averaging these metrics across the K models, we
can obtain more reliable estimates of the model’s validation
error. We then choose the training step with the best validation
error, and retrain the model with all the training data up to that
step.

This algorithm can be parallelized up to a factor of K, which
was 11 in our case. In our study, we plot the wall-clock time
to complete a job against the parallelism factor which varies
from 1 to 11 (Fig. 11). Other specifications for running the job
via Ultron-AutoML are in Table II. We note that the wall-clock
time decreases almost linearly with increase in parallelism.

C. Reproducible benchmarking of custom HPO algorithms

In this case study, we highlight the ability of the platform
to benchmark any custom HPO algorithm in a reproducible
manner. The platform was used to benchmark ReMAADE
[32], a novel HPO algorithm against TPE [20] and Random
Search. The best ML model for a regression task on the
Naval Propulsion data-set [23] was discovered via the HPO
algorithm. Each HPO algorithm experiment comprised 100
trials. The specifications for running the experiments are listed
in Table III. The results of the benchmarking are shown in Fig.
12.

The Ultron-AutoML platform ensures reproducibility by
setting seeds across the master pod, worker pods and by choos-
ing the base worker image which guarantees reproducible
results with Tensorflow and GPU computes.

TABLE III
EXPERIMENT SPECS FOR BENCHMARKING REMAADE

HPO Algorithms compared Random, TPE, ReMAADE
Datasets Naval Propulsion
Trials performed per Experiment 100
HP Configurations explored per Trial 100
Parallelism per Trial 8
Total Models Built 30000
GPU Family Tesla K80
GPUs per Worker Pod 1
Node Type Non Pre-emptible Nodes

Fig. 12. Benchmarking on the Naval Propulsion Dataset

IX. FUTURE WORK

The Data Manager can be enhanced by leveraging RAPIDS
[12] to enable efficient GPU based augmentation operations.
There is scope to use RSocket [15], GRPC [7] or raw UDP
sockets [42] to reduce latency of calls between the Data
Manager Client and the API Controller as shown in Fig.
9. RAPIDS and Apache Spark [53] can also be leveraged to
compute aggregate statistics and perform data pre-processing
when required such as in UDA [52] or to normalize data
of any modality. Furthermore, there is scope for building a
feature where custom Extract-Transform-Load pipelines [49],
pre-processing and augmentation can be injected as hyperpa-
rameters themselves.
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